
Assembly Queries: Planning and Discovering Assemblies
of Moving Objects Using Partial Information

Reaz Uddin, Michael N. Rice, Chinya V. Ravishankar, Vassilis J. Tsotras
University of California, Riverside, CA, USA

{uddinm,mrice,ravi,tsotras}@cs.ucr.edu

ABSTRACT
Consider objects moving in a road network (e.g., groups
of people or delivery vehicles), who may be free to choose
routes, yet be required to arrive at certain locations at cer-
tain times. Such objects may need to assemble in groups
within the network (friends meet while visiting a city, vehi-
cles need to exchange items or information) without violat-
ing arrival constraints. Planning for such assemblies is hard
when the network or the number of objects is large. Con-
versely, discovering actual or potential assemblies of such
objects is important in many surveillance, security, and law-
enforcement applications. This can be hard when object
arrival observations are sparse due to inadequate sensor cov-
erage or object countermeasures. We propose the novel class
of assembly queries to model these scenarios, and present a
unified scheme that addresses both of these complementary
challenges. Given a set of objects and arrival constraints,
we show how to first obtain the set of all possible locations
visited by each moving object (the travel corridor), and then
determine all possible assemblies, including the participants,
locations, and durations. We present a formal model for
various tracking strategies and several algorithms for using
these strategies. We achieve excellent performance on these
queries by preprocessing the network, using Contraction Hi-
erarchies. Experimental results on real-world road networks
show that we can efficiently and rapidly infer assembly in-
formation for very large networks and object groups.

Keywords
Location-Based Services, Spatio-temporal Trajectories, Short-
est Paths, Contraction Hierarchies

1. INTRODUCTION
In many scenarios, we wish to make inferences about the

spatiotemporal trajectories of moving objects, and in partic-
ular, about their interactions. In a surveillance task, for ex-
ample, we may wish to determine whether two or more mov-
ing objects (e.g., people) could have had a meeting within a

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

s1

e1
s2

e2

v

Figure 1: Sparse moving objects observations and
their possible trajectories and assembly locations.

region of interest (assembly discovery). If delivery vehicles
are traveling on a road network picking up and delivering
items, we may wish to arrange for meetings where items
picked up from one vehicle may be transferred to one or
more other vehicles without violating their delivery sched-
ules (assembly planning). Similarly, individuals who wish
to meet as a group may be constrained by itineraries that
require their presence at certain locations in the network at
certain times.

Efficiency is paramount, since arrival constraints or arrival
observations may be uncertain, dynamic, or unpredictable,
requiring recomputation. With delivery vehicles, for exam-
ple, the schedules for pickup and delivery may depend on
the items picked up. If video cameras, RFID, or GPS are
used to track objects in surveillance applications, tracking
may be spotty due to occlusions, inadequate sensor cover-
age, loss of signal, privacy concerns, or adversarial counter-
measures. Even combining spotty location data for moving
objects from many sources, such as location sharing in so-
cial networks, check-in applications, surveillance cameras,
cell-phone usage, and sighting reports may only yield par-
tial information about object movement.

1.1 Assembly Queries
We formalize the problem of assembly queries, a novel and

important class of queries, and show how to solve it even
given incomplete trajectory information, using knowledge of
the topology of the underlying transportation network.

Since the assembly planning and assembly discovery prob-
lems are equivalent, we discuss the discovery version using
a surveillance scenario. We assume that we are given sparse
observations, and are required to infer potential assemblies.

Figure 1 shows a simple example. We have observations of

10.1145/1235

s e

(a) (b)

Figure 2: (a) Type-I and (b) Type-II uncertainty.

two objects O1 and O2 of interest, but only at their respec-
tive entry points, s1 and s2, and exit points, e1 and e2. We
have no information either about their trajectories (dashed
lines) within the unobserved (“blind”) region, or about where
O1 and O2 could have met within this region (e.g., at node
v). Regardless, we want to make inferences about their be-
havior inside this blind region, specifically about possible
meetings and/or communications between them. We assume
that we know the network topology within the region (e.g.,
the grid lines in Figure 1 representing the transportation
network), but not the actual trajectories.

Objects may meet secretly somewhere within the blind
area if they want to disguise their intentions or mask their as-
sociations. If we can identify potential assembly sites, where
some or all of them could have been present simultaneously,
we would have leads useful in detecting the associations they
wish to hide. We may commit surveillance resources to these
sites based on the number of objects that could have met or
the possible assembly durations.

1.2 Possible Approaches
A moving object’s location is specified as the coordinate

pair lk = (xk, yk). A location report has the form rk =
(lk, tk) where lk = (xk, yk) is the object’s location at time tk.
If ri = (li, ti) and rj = (lj , tj) are consecutive reports with
tj > ti, the object is typically assumed to follow a straight
line between li and lj . However, this assumption is not al-
ways valid. The path taken between li and lj may be curved,
for instance. Even in free space, the object may follow an ar-
bitrary route between li, lj , its path being constrained only
by ti, tj , the route length, and a posited maximum speed
for the object.

Two sources of uncertainty in object locations have been
considered in the literature [1]. The first arises from the
imprecision of location sensing (Type-I uncertainty). The
second (Type-II uncertainty), arises because location up-
dates are not continuous. Type-I uncertainty is handled by
assuming that the object may lie anywhere within a disk of
a certain radius around each reported location, as in Fig-
ure 2(a). Type-II uncertainty occurs when two consecutive
updates are so far apart (in space and/or time) that the in-
termediate position is not precisely known, as in Figure 2(b).
Both types of uncertainties arise in the context of free space
movement as well as in network-constrained movement.

To handle Type-II uncertainty, we can first estimate max-
imum object speed from constraints such as speed limits
or the object’s maximum achievable speed. Computing the
region reachable by the object, as constrained by this maxi-
mum speed and the time interval between updates, yields an
ellipse, with the two consecutive locations li, lj at its foci. In

s1 e1

Possible
Corridor Nodes

s1

e1e2

s2

Possible
Assembly Nodes

(a) (b)

Figure 3: (a) Corridor (superset) of one moving ob-
ject (b) Assembly (superset) of two moving objects.

free space, the object may travel through any point within
this ellipse. (A better model may give a probability distri-
bution for the object’s location in the elliptical region.) In
fact, the object can start at li, pause for some time at any
point in the interior of the ellipse (but not at the boundary),
and still arrive at lj on time. If the object must travel over
a road network, however, Type-II uncertainty exists only if
there are several feasible routes inside the ellipse conforming
to the reports (li, ti) and (lj , tj). Even if there is only one
feasible route, the object may have stopped somewhere in
between li and lj . Such locations will remain unknown.

In the context of road networks, we will refer to road in-
tersections and other locations of interest1 as nodes. Con-
sider a pair of objects O1 and O2 moving in a road network,
subject to Type-II uncertainty. Let the sets U1 and U2 be
the nodes within the elliptical uncertainty regions for O1 and
O2, respectively (see Figure 3(a)). Let the sets R1 and R2 of
reachable corridor nodes be the collection of nodes on all fea-
sible routes for O1 and O2, respectively. Note that R1 ⊆ U1

and R2 ⊆ U2, as the corridor nodes are further constrained
by travel on the underlying road network. Clearly, the set
of assembly sites is C ⊆ R1 ∩ R2 ⊆ U1 ∩ U2 (Figure 3(b)).
Some nodes in this intersection may not be true assembly
nodes, however, since we must also account for temporal
constraints. Specifically, O1 and O2 must be present simul-
taneously at a node to represent a true assembly.

1.3 Our Contributions
In this paper we first consider the problem of identifying

the set of corridor and/or assembly nodes of an arbitrary
number of moving objects. We then consider the more gen-
eral [γ, τ]-assembly query, which returns the set of assembly
nodes at which at least γ objects could have met for at
least τ time units. Finally, we consider the [top-k(γ), τ]
query, that finds the k assembly nodes with the largest-
possible meeting sizes and the [γ, top-k(τ)] query, that re-
ports the k assembly nodes with the longest-possible meet-
ing durations. We present efficient algorithms to address
these queries; moreover, using preprocessing based on the
well-known Contraction Hierarchies (CH) approach [2], our
solutions are extremely fast, answering the above queries in
only a few seconds for large numbers of observed objects.
As we shall show, our proposed CH-based method is able to
efficiently process the corridors and assemblies of all objects
simultaneously within a single aggregate search, as opposed
to the naive method which requires O(n) distinct Dijkstra

1See Appendix A for further discussion.

searches for n objects. Thus we are able to achieve orders
of magnitudes of speed up over the naive method.

The rest of the paper is organized as follows: Section 2
provides related work, while Section 3 formally introduces
the tracking model used. The various queries we address are
discussed in Section 4 and our algorithms are presented in
Section 5. The experimental evaluation using real road net-
works appears in Section 6. Section 7 concludes the paper.

2. RELATED WORK
Recently, there has been much research on access meth-

ods for moving objects; such indexes answer spatio-temporal
range queries about past and/or future positions of the mov-
ing objects. They typically assume that a moving object
moves on a straight line between subsequent trajectory lo-
cations and involve some variation on hierarchical trees [3,
4], or some form of a grid-based structure [5] or indexing
in parametric space [6]. [7] discuss indexing objects moving
in networks. A typical spatiotemporal range query speci-
fies a rectangular spatial range and a temporal interval, and
requires all objects that went through that rectangle dur-
ing the given time interval. Type-I uncertainty for such are
considered in [8, 9, 10]. Ni et al. [8] examine Type-I un-
certainty about the location of static spatial objects. They
consider spatial join of uncertain polygons (representing the
boundary of static spatial objects) and propose an R-Tree
based method for the join. [9] provides a detailed model for
including uncertainty in data indexing, as well as algorithms
for querying both past and future locations of the moving
objects. [11] addresses Type-I uncertainty (in free space) by
using a stochastic model. According to this model, the lo-
cation probabilities of an object at a particular time depend
on its previous location.

Range queries with Type-II uncertainty are considered in
[12, 13]. In particular, [12] examines range queries on mov-
ing objects in free space while [13] considers snapshot and
continuous range queries in network space. [14] considers
the continuous nearest neighbors query in free space with
Type-II uncertainty. These works are implicitly using the
notion of a corridor between two consecutive location up-
dates. Among them, [13] is the closest to ours as it con-
siders Type-II uncertainty in a road network. However, we
examine the assembly problem (which requires to compute
spatio-temporal intersections among the corridor nodes in
the road network of a number of moving objects), which
was not attempted in any previous work.

Works on the map matching problem [15] are also related.
The aim is to match GPS data to a digital map or road net-
work. Map matching can be affected by both Type-I and
Type-II uncertainty. [16, 17, 18] propose map matching al-
gorithms to find the potential routes taken by a moving ob-
ject under Type-II uncertainty in a road network. [16] uses
historic trajectories to find potential routes while [17, 18] use
road network topology and spatio-temporal attributes of the
trajectory (for which map matching is being done). Never-
theless, none of these algorithms can be used to identify the
corridor between two contiguous GPS samples.

Other related problems include destination prediction and
alternative route computation. Predestination[19] predicts
the destination of a moving object by computing the like-
lihood of each possible region as the final destination. The
likelihood depends on the object’s past travel history and
route taken so far in the current trip. As the current trip

progresses the prediction becomes more likely to be correct.
[20] starts with destination prediction and then predicts pos-
sible routes to the destination as well. [21] finds alterna-
tive routes that are significantly different than the shortest
path but also ‘reasonable with no unnecessary detours’. It
maintains that an alternative path should be locally opti-
mal(shortest) to be reasonable. [22] also presents methods
to find alternative routes with the goal to be able to measure
the quality of alternative routes based on the graph struc-
ture. While these methods consider possible routes, none
of them can be used to identify all corridor and assembly
nodes.

G Weighted, directed graph of the road network
V Vertices (a.k.a., nodes) representing road

intersections or locations of interest in G
E Edges representing road segments in G
w Weights for road segments in E representing

minimum time to traverse a road segment
r Number of objects
O Set of moving objects {o1, o2, . . . , or}
si Starting node of object oi ∈ O
ei Ending node of object oi ∈ O
di Minimum time to travel from si to ei
δi Actual transit time from si to ei for object oi
dmin Minimum di amongst objects in O
αi(u) Availability interval of object oi at node u
AO′ Assembly nodes for objects in O′ ⊆ O
∆O′(u) Assembly interval of objects O′ ⊆ O at node u
γ Minimum assembly size
τ Minimum assembly duration
k Number of top nodes in top-k query
ε Detour length scale factor

Table 1: Symbols used in this paper.

3. FORMAL TRACKING MODEL
The underlying transportation network is represented as

a weighted, directed graph G = (V,E,w), where V is the set
of nodes representing road intersections, E ⊆ V × V is the
set of edges representing roads crossing between nodes in V ,
and w : E → R>0 is a positive weight function mapping the
edges to their respective travel times. Let d(u, v) denote the
minimum time of travel, at the maximum speed(s), along
the quickest path between nodes u and v.

Let O = {o1, o2, . . . or} be the set of moving objects being
tracked. We use oi@〈u, t〉 to denote a location record, i.e.,
that object oi was at node u ∈ V at time t. We consider ob-
ject locations only at nodes in V (road intersections). If all
the nodes that an object visited are known, then there is no
uncertainty about this object’s route on the road network.
Since we assume that not all location records are known, we
focus on the route uncertainty between two known (time-)
consecutive location records. Between the two nodes re-
ported in these consecutive location records there can be
multiple possible routes that the object may have taken,
especially if the time interval between these two location
records is large.

Let oi@〈si, tsi〉 and oi@〈ei, tei〉 be the start and end records
for object oi ∈ O as it enters and exits an unmonitored re-
gion, with si, ei ∈ V and tsi , tei ∈ R≥0. Our challenge is to

make inferences about oi’s behavior within this unmonitored
region. Object oi’s transit time from si to ei is δi = tei−tsi .
Clearly, δi ≥ d(si, ei) = di (see Table 1).

For a node u ∈ V , let eai(u) = tsi + d(si, u) be the
earliest-arrival time at which oi can arrive at node u, and let
ldi(u) = tei − d(u, ei) be the latest-departure time at which
oi can depart u to reach ei at tei . Clearly, object oi can pass
through a node u if and only if eai(u) ≤ ldi(u). Let us define
αi(u) = [eai(u), ldi(u)] to be the availability interval of oi
at node u. Abusing notation slightly, we will treat an avail-
ability interval as being synonymous with the set of time
instants it includes, and speak of unions and intersections
of intervals. We will call an interval [a, b] empty whenever
a > b, and write [a, b] = ∅. We say u is reachable by oi iff
αi(u) 6= ∅.

We define the set of corridor nodes for oi to be the setRi =
{u ∈ V | αi(u) 6= ∅}. These are the nodes reachable by oi
along some route from si to ei that respects the timestamps
at si and ei. A meeting is feasible at node u between objects
oi and oj if their availability intervals overlap at u. That
is, we must have αi(u) ∩ αj(u) 6= ∅. The longest possible
assembly duration at node u for a given set of objectsO′ ⊆ O
is clearly

∆O′(u) =
⋂

oi∈O′

αi(u).

Let the set of assembly nodes for a subset of objects O′ ⊆
O be defined as AO′ = {u ∈ V | ∆O′(u) 6= ∅}. Since
availability intervals are closed intervals, if an object arrives
at a node at precisely the instant that another object departs
it, we consider the two objects to have met at that node.

4. QUERY TYPES
The basic queries we would want to support under the

tracking model presented above would report (1) the set of
corridor nodes for a given object oi, to discover where oi
could have traveled, and (2) the set of assembly nodes for a
given subset of objects O′ ⊆ O, to discover where these ob-
jects could have met. Our model is sufficiently extensible to
support other queries of interest by incorporating additional
constraints and query objectives.

The first of these extended queries is the [γ, τ]-query, which
reports the set of nodes at which assemblies of size at least
γ and duration at least τ are possible. That is, it returns
{u ∈ V | ∃O′ ⊆ O, |O′| ≥ γ, |∆O′(u)| ≥ τ}. This allows for
finer control over the sizes of groups or assembly durations
which we are interested in tracking.

Other extended queries that we also consider in this model
include the [top-k(γ), τ] query, which reports the k assembly
nodes with the largest possible assembly sizes γ of at least
some fixed duration τ , and the [γ, top-k(τ)] query, which
reports the k assembly nodes with the longest possible as-
sembly durations τ of at least some fixed assembly size γ.

5. METHODS
Let O = {o1, o2, . . . , or}, and let object oi ∈ O have tran-

sit time δi across the unmonitored region, as in Sec. 3. Let
AO be the set of assembly nodes for the object set O, given
the set of transit times {δk}. We first describe an algorithm
for a [γ, τ]-query with γ = |O| = r and τ = 1. We shall call
this the [r, 1]-query. We then extend this approach to show
how to evaluate [γ, τ]-queries for arbitrary γ and τ , as well
as top-k queries.

For simplicity, we assume in the rest of the paper that
we have exactly two consecutive records oi@(si, tsi) and
oi@(ei, tei) for each object oi, recording its movement be-
tween nodes si and ei. These may represent its entry and
exit from an unobserved area, such as in Figure 1. The gen-
eralization to many records per object is straightforward.

5.1 The Naïve Solution
The näıve solution we present for [r, 1]-queries has two

phases: a search phase and an evaluation phase. The search
phase begins with a bidirectional Dijkstra search [23] for
each object oi ∈ O, running forward from the source si and
backward from the destination ei, with the region transit
time δi as the search cutoff bound. Initially, we set ∆O(u) =
[∆u

a ,∆
u
b] = [−∞,∞] ∀u ∈ V . We also set eai(u) = ∞,

ldi(u) = −∞ ∀oi ∈ O. Each forward and backward search
then sets eai(u) = tsi + d(si, u) and ldi(u) = tei − d(u, ei),
only when d(si, u) ≤ δi and d(u, ei) ≤ δi, respectively. After
the bidirectional search for a given object oi is done, we
set ∆O(u) = [max{∆u

a , eai(u)},min{∆u
b , ldi(u)}], ∀u ∈ V .

After each bidirectional search, we may also easily establish
the set of corridor nodes Ri for the corresponding moving
object oi, according to the definition given in Sec. 3.

A node may lie in the corridor of several objects. During
the search phase we also keep count of the total number of
objects that can reach a node u. We call this the reachability
number ρ(u) of node u. We set ρ(u) = 0 for all u ∈ V before
beginning the search phase. During the bidirectional search
for any object oi, we increment ρ(u) when node u becomes
reachable by oi.

In the evaluation phase, we process nodes to determine if
they are possible assembly nodes for the objects of interest.
Since an [r, 1]-query requires nodes at which all r objects
could have met, we process a node iff ρ(u) = r. This condi-
tion shows that u lies in the corridors for all r objects, but
does not guarantee they could have all been simultaneously
present at u. Therefore, we check the assembly duration
∆O(u) for each node u with ρ(u) = r. If ∆O(u) 6= ∅, then u
is an assembly node, that is, all objects could meet at u.

For r objects, this method requires exactly 2r Dijkstra
searches. Hence, in the worst case, a node may be visited
by up to 2r distinct searches. In Sec. 5.4, we propose an al-
ternate method for speeding up shortest-path computations
based on a pre-processing technique. This method requires
us to explore every node no more than twice, making for a
much faster and more scalable approach overall.

5.2 Arbitrary [γ, τ]-Query
We can ensure assembly durations of at least τ by chang-

ing the start times tsi to tτsi = tsi + τ . This makes δτ =
tei − tτsi = tei − (tsi + τ) = δi − τ before the search phase.
Henceforth, we take the transit times to be {δτ1 , . . . , δτr },
the set of adjusted transit times, unless specified otherwise.
Now, after the search phase, eai(u) ≤ ldi(u) iff |αi(u)| ≥ τ
(based on the original, unmodified start times). Similarly,
for any subset of objects O′, if ∆O′(u) = [a, b] and a ≤ b,
then the objects in O′ can assemble at u for at least time τ .

Let ÔAu be a maximal set of objects that can form an
assembly at node u. For u to be an assembly node, we also
require |ÔAu | ≥ γ. Unlike with the [r, 1]-query, we cannot
update the assembly duration for a node because we do not
know in the search phase which subset(s) of O will satisfy the
[γ, τ] condition. Hence, we cannot identify assembly nodes

merely by checking their reachability numbers and assembly
durations. Even if ρ(u) ≥ γ, the availability intervals at

u for all objects may not overlap, leading to |ÔAu | < γ. To
evaluate a general [γ, τ]-query, potential nodes are examined
during the evaluation phase, after the search phase.

The evaluation phase examines all nodes with reachability
number ρ(u) ≥ γ as potential assembly sites. Let ORu be
the set of objects for which u is reachable. A brute force
method would compute ∆O′(u) for all subsets O′ ⊆ ORu with
|O′| ≥ γ. However, in the worst case, this is exponential in
|ORu | and thus impractical. Instead, we use the following line
sweep algorithm.

5.2.1 The Line-Sweep Algorithm
Figure 4 illustrates the line-sweep algorithm with 10 ob-

jects a, b, . . . , j. The values to, t
′
o denote the ea, ld times-

tamps for each object o ∈ {a, b, . . . , j} at some node u.
We start by selecting nodes {u | ρ(u) ≥ γ}. To determine
whether at least γ objects from ORu can meet at node u, we
sort the ea and ld timestamps of all objects in ORu in increas-
ing order. Then we “sweep the line” from the earliest to the
latest timestamp, keeping a counter c of intervals that have
started but not ended yet. These are the live entries.

The value c counts the number of overlapping intervals at
the current position on the line. The maximum value cmax

of c gives the maximum number of objects that can meet
at node u (six in Figure 4). There may, of course, be many
subsets of objects satisfying the assembly size constraint γ.
If we want all such subsets, we must continue the line sweep
up to the end. If, however, we want to know only whether
there is at least one subset of size γ or larger, we can stop
the line sweep as soon as c ≥ γ. For example, if γ = 3 then
we can stop at timestamp tc in Figure 4.

Another strategy for early stopping is to consider the num-
ber of objects f that have not yet been encountered in the
line sweep. Clearly, if c+ f < γ, then an assembly of γ ob-
jects at node u is impossible, and we can stop sweeping. If
γ = 8 in Figure 4, for example, then at timestamp t′c we have
c = 3 and f = 4, and we can stop sweeping early. This test
is useful whether we are looking for all subsets that satisfy
the query condition or just a Boolean answer.

5.3 Top-k Queries
Going beyond the standard [γ, τ] query, we consider two

types of top-k queries. The first, the [top-k(γ), τ] query, re-
turns the assemblies that have the k highest γ values, subject
to a given minimum τ value. The second, the [γ, top-k(τ)]
query, returns the assemblies having the k highest τ values,
subject to a given minimum γ value.

We will maintain priority queues Qγ and Qτ , for the
[top-k(γ), τ] and [γ, top-k(τ)] queries, respectively, in the
evaluation phase of the standard [γ, τ] query. Nodes with a
certain reachability number (depending on the query type,
as detailed below) are evaluated, and the priority queue up-
dated if the current top-k candidate list can be improved.

5.3.1 [top-k(γ), τ] Queries
Let χQ

γ

min be the minimum assembly size in the priority
queue Qγ at a given time. For the [top-k(γ), τ] query, a
node u is always evaluated if |Qγ | < k. If Qγ has at least k

elements, however, the node is evaluated iff ρ(u) > χQ
γ

min.
We use the same line sweep algorithm described above to

evaluate a node, but we cannot use the same early stopping

conditions described previously. This is because whenever
the maximum number of objects that can meet at node u
exceeds the minimum assembly size in Qγ , we must update
Qγ by deleting the node with minimum assembly size and
inserting the node u and its maximum assembly size. We
cannot compute the maximum assembly size at node u with-
out completing the line sweep algorithm for u.

Regardless, we can stop sweeping as soon as we determine
that the node cannot improve the current top-k list. One
early stopping criterion we use is c+f ≤ cmax, which means
continuing sweeping will not improve the maximum assem-
bly size we have already found for this node. Even if we stop

early with this condition we could still have cmax > χQ
γ

min,
and we will have to update Qγ .

To see this, consider a [top-k(γ), τ] query and χQ
γ

min = 5.
At time tg in Figure 4, we have c + f = 6, which will not
improve the current best value for this node. We hence stop,

but we still update Qγ , and χQ
γ

min becomes 6. Another early

termination condition is c + f ≤ χQ
γ

min, which implies that

an assembly larger than χQ
γ

min cannot be achieved from the
current position of the sweeping line. In this case, we need
not update Qγ . As an example, consider the above query

with χQ
γ

min = 9. At time t′f we have c + f = 9. So we stop
at this point and do not update Qγ .

5.3.2 [γ, top-k(τ)] Queries
To evaluate a [γ, top-k(τ)] query with a minimum assem-

bly size γ, we can not adjust the travel times to account for a
minimum assembly duration (as suggested in Sec. 5.2), since
the desired duration is not known beforehand. We evaluate
a node u if ρ(u) ≥ γ, using a modified line sweep algorithm.

Since we aim to maximize the assembly duration subject
to a minimum assembly size γ, we need not consider assem-
blies larger than γ. Thus, as we sweep the line we record the
start of an assembly as soon as the number of live objects
reaches γ. We continue sweeping as long as the assembly
size is at least γ, and record the end of the assembly when
the number of live objects drops below γ at the end of an
interval.

The assembly duration is computed from the start time
of the γth interval. To do this, we must keep track of the
γth interval during the line sweep, as intervals start and end.
We maintain a list of live intervals sorted by their start time,
as well as a pointer to the γth interval in this list. When an
interval with an earlier start time than that of current γth

interval ends, we advance the pointer to the γth interval by
one (when there are more than γ intervals in the list of live
intervals). If an interval that started after the γth interval
ends we simply delete it from the live list without modifying
the pointer.

Consider a [γ, top-k(τ)] query with γ = 3 in the example
of Figure 4. At time tc we have 3 live intervals {a, b, c}.
So c becomes the γth interval and tc is the start time of an
assembly of at least γ objects. Then intervals d, e, and f
start and interval f ends but the γth entry remains the same
(and so does the start time of the assembly). Next, interval
a ends at t′a and the pointer to the γth interval is moved
forward to d since a is within the first γ intervals. When the
end of an interval requires updating the γth interval pointer,
we compute the current assembly duration and, if necessary,
update the maximum assembly duration found so far, before
updating the γth interval pointer.

t
ta tb tc td te tg th ti t’g t’h t’i t’a t’c t’b t’d t’e tf t’f

1

0

2

3

4

5

6

7

a

b

c

d

e

f g

h i

j

tj t’j

counter

Figure 4: The Line-Sweep Algorithm. There are ten objects {a, b, c, d, e, f, g, h, i, j} with the availability intervals
[ta, t

′
a], [tb, t

′
b], etc. at the same node u.

At time t′c the set of live intervals is {b, d, e}. Next, the
end of the interval b reduces the set of live intervals to size
2 < γ and the γth interval pointer becomes invalid. At this
point the assembly duration subject to at least γ objects is
t′b − te. As sweeping proceeds, assemblies of size at least γ
start at times tg and tj and end at t′e and t′g, with duration
t′e − th and t′g − tj . We take the longest of these assemblies
and update Qτ if necessary. We note that we not only find
the longest assembly duration as we sweep, but we also know
the object IDs of those who were present in each assembly.
This line-sweep algorithm can also therefore be used to find
all possible assemblies of size at least γ.

5.4 A Solution Using Contraction Hierarchies
We now show how the search phase can be significantly

improved by combining our proposed method with the path
contraction idea, introduced in Contraction Hierarchies [2].
A contraction replaces a path between two nodes of a graph
with a so-called shortcut edge, preserving the distance be-
tween these nodes. CH-based methods are currently some of
the fastest and most flexible approaches for answering short-
est path queries and their variations on road networks. [24,
25].

Once again, we begin by describing the search phase for
the [r, 1]-query. The evaluation phase is the same for both
the Dijkstra-based and the CH-based solutions and the ex-
tension to other queries is done by using the line-sweep al-
gorithm in the same way. However, we will show that for
the CH-based methods, the evaluation phase can be carried
out concurrently with the search phase. That is, a node is
evaluated when it is accessed during the search phase. We
start with a brief description of CH before presenting our
methods in detail.

To use the CH-based method we first need to pre-process
the graph representing our road network (note that this pre-
processing only needs to happen once, after which time all
subsequent queries may exploit it). The CH pre-processing
has two phases: (1) ordering (or ranking) the nodes of the
graph, and (2) contracting nodes one by one, in that order.
Any arbitrary ordering would preserve the correctness of the
algorithm but some orderings improve the performance more
than others (see [2] for details).

5.4.1 CH-Based Shortest Path Computation

The nodes in the graph G are first arranged in some order
φ : V → {1, . . . , |V |}, and contracted in this order. A node
v is contracted by adding shortcuts to bypass the node if
there is some unique shortest path through it. For example,
if there is a pair of incoming and outgoing edges (u, v) and
(v, x) respectively, s.t. min{φ(u), φ(x)} > φ(v) and (u, v, x)
is a unique shortest path, then a shortcut edge (u, x) with
weight w(u, v) +w(v, x) is introduced. The contracted node
remains in the graph, but the new shortcut edges are intro-
duced to bypass this node during shortest path computation.
After all nodes are contracted, the graph contains a superset
of its original edges, since we will have G = (V,E ∪ ES , w)
where ES is the set of newly-introduced shortcut edges.

To speedup the shortest path computation from s to e,
where s, e ∈ V in the contracted graph, the usual bidirec-
tional Dijkstra algorithm must be modified. The forward
search from s is run in the subgraph G↑ = (V,E↑), where
E↑ = {(u, v) ∈ E ∪ ES | φ(u) < φ(v)} and the backward
search from e is run at the same time in G↓ = (V,E↓), where
E↓ = {(u, v) ∈ E ∪ES | φ(u) > φ(v)}. A candidate shortest
path cost is updated when the two searches meet at some
node in the graph. The search in a particular direction may
be stopped when the minimum cost in the priority queue for
that direction is higher than the minimum candidate path
cost seen so far.

This approach provides significant speedups over standard
Dijkstra search by exploring a much sparser overall subgraph
(bypassing lower-ranking nodes by using the added short-
cut edges). Moreover, it remains correct because the CH
pre-processing ensures that there now exists a shortest path
between any two nodes that first strictly increases in node
rank and then strictly decreases in node rank (a so-called
weakly-bitonic shortest path [24]), which these two focused
searches are guaranteed to find when intersected.

5.4.2 Naïve CH-Based Corridor Computation
Our goal, however, is to compute corridor nodes for each

(si, ei) pair, not just the shortest paths. We can then com-
pute the set of assembly nodes, which is a subset of the
intersection of the corridor sets.

A two-phase CH-based algorithm for finding corridor nodes
for a given (si, ei) pair and duration δτi is presented in [24].
The first phase (upward search) runs a forward search from
si in G↑ and a backward search from ei in G↓. In the second

phase (downward search), nodes touched in the first phase
are accessed in decreasing φ order and downward edges are
expanded to find the corridor nodes v ∈ Ri (see Fig. 5 for
conceptual illustration). Both the upward and downward
searches are bounded by a threshold (the transit time δτi ,
in our case). The intuition is that by the time a node v
is encountered during the downward search phase, we are
guaranteed to know the shortest-path cost from si to v as
well as from v to ei by this same weakly-bitonic shortest
path property, and can thus easily determine if v ∈ Ri.

To compute corridor nodes for multiple (si, ei) pairs, a
straightforward way would therefore simply be to use the
above algorithm once for each (si, ei) pair.

5.4.3 Optimized CH-Based Corridor Computation
We can exploit the structural properties of CH even fur-

ther, however, to compute the corridor nodes for all (si, ei)
pairs simultaneously. We run a modified version of the above
two phase algorithm just once, bounded by thresholds δτi .

The extension (described in detail below) is to process
all objects simultaneously within the same type of two-
phased search: one upward-search phase that establishes the
strictly-increasing-rank portions of a shortest path forward
from all si toward some v and backward from all ei to-
ward some v (e.g., the red subpaths in Fig. 5), followed by
one downward-search that completes the shortest paths to
each node v that falls within at least one object’s corridor
by establishing the strictly-decreasing-rank portions of those
same shortest paths (e.g., the blue subpaths in Fig. 5).

The intuition here (formalized in Theorem 1) is the same
as it was for the single-object corridor search in [34]; only
now, we are able to guarantee that, by the time a node is
removed from the downward search queue, we have estab-
lished all relevant shortest-path information for all objects
simultaneously. Thus, at that point during the search, we
can immediately evaluate whether that node belongs in the
solution or not. The algorithm is as follows.

For vertex v, let dsi(v) and dei(v) be the times to traverse
the quickest path found searching forward from si and back-
ward from ei, respectively. Consider the following extension
of the above corridor search algorithm.

Start with an increasing rank order queue, incQ, holding
si, ei, ∀oi∈O. Before the search, set dsi(si) = dei(ei) = 0,
and dsi(v) = dei(v) = ∞ where v 6= si, ei. When a node v
is accessed from incQ it is inserted into a decreasing rank
order queue decQ if dsi(v) ≤ δτi or dei(v) ≤ δτi for some
oi ∈ O. Now, v’s upward edges are expanded as follows.

For all outgoing (v, x) ∈ E ∪ ES , such that φ(v) < φ(x),
set dsi(x) = min{dsi(x), dsi(v) + w(v, x)} for all oi ∈ O. If
x 6∈ incQ and dsi(x) ≤ δτi for some oi ∈ O, add x to incQ.
For all incoming (u, v) ∈ E ∪ES , such that φ(v) < φ(u), set
dei(u) = min{dei(u), dei(v) + w(u, v)} for all oi ∈ O, and if
u 6∈ incQ and dei(u) ≤ δτi for some oi ∈ O, add u to incQ.
The upward search ends when incQ becomes empty.

After the upward search, we access nodes in decQ in de-
creasing rank order. When a node v is accessed from decQ
its edges are expanded downward as follows. For all outgo-
ing (v, x) ∈ E ∪ ES , such that φ(v) > φ(x), set dsi(x) =
min{dsi(x), dsi(v) + w(v, x)} for all oi ∈ O. If x 6∈ decQ
and dsi(x) + dei(x) ≤ δτi for some oi ∈ O, add x to decQ.
For all incoming (u, v) ∈ E ∪ ES , such that φ(v) > φ(u),
set dei(u) = min{dei(u), dei(v) + w(u, v)} for all oi ∈ O. If
u 6∈ decQ and dsi(u) + dei(u) ≤ δτi for some oi ∈ O, add u

si ei

vp v′p

u

v

x

U
p
w
ar
d
S
ea
rc
h S

earch
D
ow

nw
ard

S
ea
rc
h

D
ow

nw
ar
d U

p
w
ard

S
earch

φ

Figure 5: Weakly-bitonic shortest paths computed
forward from some si to v and backward from some
ei to v for some v ∈ Ri during the two-phased search.

to decQ. The downward search ends when decQ is empty.

Theorem 1. When a node is accessed from decQ in the
downward search phase, dsi(v) = d(si, v) and dei(v) = d(v, ei)
for all oi ∈ O.

Proof. Between any pair of connected nodes v1 and vq
after preprocessing, there must exist a weakly-bitonic [24]
shortest path P = 〈v1, . . . , vp, . . . , vq〉, such that φ(v1) <
. . . < φ(vp−1) < φ(vp) and φ(vp) > φ(vp+1) > . . . > φ(vq).
(The path is weakly bitonic since vp = v1 or vp = vq may
be true.) Let v be any node removed from decQ in the
second search phase. Now, for every oi ∈ O, there must
exist weakly-bitonic shortest paths from si to v and from
v to ei (as in Fig. 5). Let the first of these be P =
〈si = v1, . . . , vp, . . . , vq = v〉 from si to v, such that vp is
the highest-ranking node in P . In the first, upward search
phase, paths are processed forward from si in increasing
node rank order, and thus, in shortest-path order up to
vp, correctly establishing the costs along the subpath P1 =
〈v1, . . . , vp〉. In the second, downward search phase, the
search processes paths in decreasing node rank order, and
also thus, in shortest path order for the remainder of the
path, correctly establishing the costs along the remaining
subpath P2 = 〈vp, . . . , vq〉. By the time v is removed from
decQ, dsi(vq) = dsi(v) = d(si, v) is therefore correctly estab-
lished. A symmetric argument holds for the weakly-bitonic
shortest path from v to ei, ensuring dei(v) = d(v, ei).

After removing a node v from decQ in the second (down-
ward) search phase, we may immediately proceed to evaluate
v as a candidate for inclusion in the query solution, exactly
as before. This is because Theorem 1, guarantees that we
already have all necessary information required to establish
v’s availability intervals for all relevant objects. Further-
more, any node v that belongs to the corridor of at least one
object oi ∈ O will be guaranteed to be removed from decQ
for evaluation. This is because all nodes along the weakly-
bitonic shortest paths forward from si and backward from
ei to v will, by definition, be reachable from said terminals
within the requisite threshold δτi , which is sufficient for in-
clusion in both the incQ and decQ priority queues during
the search. Therefore, we ensure that any valid candidate
nodes will be properly evaluated.

Our experiments show that our method is faster than the
naive Dijkstra-based method. The two methods have equiv-
alent evaluation phases, but the search phase of our method
has a better worst-case asymptotic time complexity over-
all. The Dijkstra-based method requires O(r(m + n logn))

2 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

Number of Objects

CP
U

Ti
m

e
(s

ec
)

(γ, τ) Query, Dij.

(γ, τ) Query, CH

Top−K−γ, Dij.

Top−K−γ, CH

Top−K−τ, Dij.

Top−K−τ, CH

2 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Objects

St
an

da
rd

 D
ev

iat
ion

 o
f C

PU
 T

im
e

(γ, τ) Query, Dij.

(γ, τ) Query, CH

(a) (b)

Figure 6: (a) Query Evaluation Time vs Number of
Objects. (b) Standard Deviation of Query Evalua-
tion Time vs Number of Objects.

Parameter Minimum Maximum Default
ε 0.1 1 0.5
r 2 100 20
k 10 100 100
γ r/10 r r/2
τ εdmin/10 εdmin εdmin/10

Table 2: Default parameter Values.

time (two distinct Dijkstra searches per object). Our CH-
based search reduces the total worst-case time complexity
to O(rm+ n logn), as each explored node is only sorted by
rank at most twice and we relax costs for each object at most
O(m) times. Our advantage becomes sharper as r grows.

As with most CH-based search algorithms, our method
benefits most significantly in practice from the sparse search
spaces afforded by this exploitation of shortcut edges and
weakly-bitonic shortest paths.

6. EXPERIMENTAL EVALUATION
We evaluated our algorithms on a real-world dataset, which

was the combined road network data for California and Nevada.
This combined network has 1,890,815 nodes and 4,630,444
edges. The values of the various parameters used in our
experiments appear in Table 2.

An edge was weighted by the travel time over that road
segment. We generated queries by randomly selecting a
source-destination (s, e) pair for each moving object. Since
the travel time δi between a pair (si, ei) had to be at least
di = d(si, ei), we set δi = (1+ε)di. All experiments were run
on an Intel Xeon 3.0GHz quad core processor running Linux
2.6.18 with 8GB of main memory. Below we report the CPU
time for all query evaluations (the road networks used in the
experiments as well the structures needed to maintain the
observed objects can all fit in the available main memory).

We first examine the effect of the number of moving ob-
jects r being tracked on the query evaluation time for all
three types of queries. The results are shown in Figure 6.
We varied the number of objects from 2 to 100 for the CH-
based methods. For Dijkstra-based methods we stopped the
experiments after 50 objects since these methods do not
scale, and the running times became unmanageably large.
For each value of r, we averaged the query time over 100
random queries. Thus, for 10 objects, we had 100 different
sets of moving objects, each of size 10.

These experiments used ε = 0.5, γ = r/2, τ = εdmin/10.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

Meeting Size(fraction of total number of objects)

CP
U

Ti
m

e
(s

ec
)

γ,τ Query DJ
γ,τ Query CH

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

ε

CP
UT

im
e

(s
ec

)

γ,τ Query DJ
γ,τ Query CH

Figure 7: (a) Min γ vs Query Evaluation Time for
(γ, τ)-queries. (b) The effect of the ε parameter on
the Query Evaluation Time.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

40

Meeting Duration Fraction

CP
U

Ti
m

e
(s

ec
)

γ,τ Query DJ
γ,τ Query CH

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

 k (in Top− k Queries)

CP
U

Ti
m

e
(s

ec
)

Top− k−γ DJ
Top− k−γ CH
Top− k−τ DJ
Top− k−τ CH

(a) (b)

Figure 8: (a) Min τ vs Query Evaluation Time for
(γ, τ)-queries. (b) Query Evaluation Time for Top-k
queries.

That is, at least half the moving objects were required to
spend at least one tenth of their minimum additional travel
time (εdmin) in an assembly. The query times are presented
in Figure 6(a), which uses a logarithmic scale. Our CH-
based methods run 1-2 orders of magnitude faster and rise
much more slowly than do the Dijkstra-based methods. The
query times for top-k queries are very similar to those for
[γ, τ]-queries. This implies that the additional work of main-
taining the top-k queues is quite minimal. Note that, the
standard deviation of query times for the [γ, τ]-query using
the Dijkstra-based approach is much higher than that for
the CH-based method, as depicted in Figure 6(b). That
is, the query times for the Dijkstra-based approach are less
predictable.

Figure 7(a) examines the effect of the minimum assembly
size γ on query evaluation time for [γ, τ]-queries. We var-
ied the minimum assembly size from 10% to 90% of the
total number of objects, setting ε = 0.5, τ = εdmin/10
and the number of objects to 20. Clearly the CH-based
approach outperforms the Dijkstra-based method. Because
of the drastic difference in query evaluation time we depict
the performance of each method separately, in Figures 10(a)
and (b) (see Appendix B). Since a node is not evaluated if its
reachability number is less than γ, a higher minimum assem-
bly size lowers the number of nodes evaluated. Hence, we
expect the query evaluation time to decrease with γ. This
trend is clear at larger γ values. We note that the query time
first increases before it starts to plummet. This is because
for small γ, there are many nodes with reachability number
higher than γ. Above a certain γ value, however, the query
time falls quickly.

Next, we study the effects on [γ, τ]-queries of the param-
eter ε, which determines the additional travel time we allow
beyond the fastest travel time. Since the size of the search

0 0.5 1 1.5 2
x 10

6

0

1

2

3

4

5

6

7

8

Number of Nodes

CP
U

Ti
m

e
(s

ec
)

(γ, τ) Query, CH
Top−K−γ, CH
Top−K−τ, CH

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Objects

CP
U

Ti
m

e
(s

ec
)

(a) (b)

Figure 9: (a) The effect of network size (number of
nodes) on the query evaluation time.

space for our algorithms depends on the value of ε, we varied
ε from 0.1 to 1.0 in steps of 0.1. For these experiments we
set the number of objects to 20, γ = r/2, τ = εdmin/10. The
average query evaluation time is computed by running 100
random queries for each value of ε. As Figure 7(b) shows,
the query time rises very slowly with ε for the CH-based
method, but very sharply for the Dijkstra-based methods.
This is because although the search space grows quadrati-
cally with ε, the CH-based approach does not touch all nodes
in the search space and is less affected. Since top-k queries
touch same number of nodes as [γ, τ]-queries, we expect the
effects of ε on them to be similar.

Next we examine the effect of the minimum assembly du-
ration τ on the query evaluation time for [γ, τ]-queries. For
these experiments we varied the minimum assembly dura-
tion from 10% to 50% of the additional travel time, setting
ε = 0.5, γ = r/2, and number of objects to 20 for this ex-
periment. The results appear in Figure 8(a); as the value of
minimum τ increases, the query evaluation time decreases.
Similarly with the previous min γ experiment, a larger min-
imum assembly duration results in the evaluation of fewer
nodes, resulting in a lower query time.

We proceed with the experimental evaluation of top-k
queries. The results appear in Figure 8(b) for values of
k ranging from 10 to 100. For these experiments we set
ε = 0.5, γ = r/2, τ = εdmin/10 and the number of objects
to 20. The query time for both [top-k(γ), τ] and [γ, top-k(τ)]
queries remains almost constant as k increases. This is ex-
pected, as the value of k affects the evaluation phase only,
but not the search phase, and the search phase accounts for
the bulk of the query processing time.

In Figure 9(a) we examine the effect of the road network
size on the query evaluation time of the CH-based meth-
ods. The X-axis depicts the number of nodes in the net-
work being considered. This graph, in conjunction with
earlier results, such in Figure 6, shows that our CH-based
method scales very well. In these experiments, we chose the
road network contained within a rectangular region of the
California-Nevada road network, and increase the number
of nodes by enlarging the rectangle size. The experiment
was run for 100 objects and using the default values of all
other parameters. The number of nodes varied from a few
thousands to more than 1.5 million. All the CH-based algo-
rithms behave similarly showing a close to linear increase in
the query evaluation time as the number of nodes increases.

Finally, we examined how the CH-based algorithms scale
with respect to the number of observed objects. For this ex-
periment we used a rectangular region from the California-

Nevada road network that has 265K nodes and 637K edges.
Using default values of all other parameters, we increased
the number of observed objects up to 450 objects. Figure
9(b) depicts the results for the [γ, τ]-query (the top-k queries
behaved similarly); clearly we can see that the query evalu-
ation time for the CH-based method scales linearly with the
number of objects.

7. CONCLUSIONS
We introduced the novel and important class of assembly

queries; such queries appear in the form of either “assembly
discovery” (determine whether two or more moving objects
could have had a meeting within a region of interest) or “as-
sembly planning”(arrange for meetings for a group of friends
visiting a city without violating their remaining schedules).
We provide efficient solutions to such queries given incom-
plete trajectory information, using knowledge of the topol-
ogy of the underlying transportation network. In particu-
lar, we consider a number of variations where the query can
specify meeting duration or meeting size or seek top-k nodes
(meeting locations) based on these attributes. We present
a formal model for the general problem and prove the cor-
rectness of our algorithm. Furthermore, we show how to
utilize a preprocessing method based on Contraction Hier-
archies to gain orders of magnitude speed up over the näıve
Dijkstra-based methods.

There are various interesting open problems that the as-
sembly queries lead to. In the present paper we assume
that the weight of an edge (travel time) is static; we are
examining ways to extend our algorithms when considering
dynamic traffic patterns (for example the weight of an edge
depends on the time of day it is traveled; for this scenario ex-
tensions to the CH-based approach will be needed). We are
currently extending our algorithms to address reachability
queries (transitive communications) within this framework.
We are also examining whether parallelism can be used to
further improve query processing.

8. ACKNOWLEDGMENTS
This research was partially supported by the National Sci-

ence Foundation grants IIS-1527984 and CNS-1330110.

9. REFERENCES
[1] D. Pfoser and C. S. Jensen, “Capturing the

uncertainty of moving-object representations,” in
Symp. Adv. in Spatial Databases, 1999, pp. 111–132.

[2] R. Geisberger, P. Sanders, D. Schultes, and D. Delling,
“Contraction hierarchies: faster and simpler
hierarchical routing in road networks,” in Proc. 7th
Intl.Wksp. on Experimental Algorithms (WEA), 2008.

[3] G. Kollios, D. Gunopulos, and V. J. Tsotras, “On
indexing mobile objects,” in Proc. 18th ACM PODS,
1999, pp. 261–272.

[4] S. Chen, B. C. Ooi, K.-L. Tan, and M. A. Nascimento,
“ST2B-tree: A self-tunable spatio-temporal B+-tree
index for moving objects,” in Proc. ACM SIGMOD
Conference, 2008, pp. 29–42.

[5] J. M. Patel, Y. Chen, and V. P. Chakka, “Stripes: An
efficient index for predicted trajectories,” in Proc.
ACM SIGMOD Conference, 2004, pp. 635–646.

[6] J. Ni and C. V. Ravishankar, “Indexing
spatiotemporal trajectories with efficient polynomial

approximation,” IEEE Trans. on Knowl. and Data
Eng., vol. 19, no. 5, pp. 663–678, 2007.

[7] V. T. De Almeida and R. H. Güting, “Indexing the
trajectories of moving objects in networks,”
Geoinformatica, vol. 9, no. 1, pp. 33–60, Mar. 2005.

[8] J. Ni, C. V. Ravishankar, and B. Bhanu, “Probabilistic
spatial database operations,” in Proc. 8th SSTD, 2003,
pp. 140–158.

[9] G. Trajcevski, O. Wolfson, K. Hinrichs, and
S. Chamberlain, “Managing uncertainty in moving
objects databases,” ACM Trans. Database Syst.,
vol. 29, no. 3, pp. 463–507, Sep. 2004.

[10] G. Trajcevski, “Probabilistic range queries in moving
objects databases with uncertainty,” in Proc. 3rd ACM
MobiDE, 2003, pp. 39–45.

[11] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and
A. Zufle, “Querying uncertain spatio-temporal data,”
in Proc. IEEE ICDE, 2012, pp. 354–365.

[12] G. Trajcevski, A. N. Choudhary, O. Wolfson, L. Ye,
and G. Li, “Uncertain range queries for necklaces.” in
11th MDM Conf., 2010, pp. 199–208.

[13] K. Zheng, G. Trajcevski, X. Zhou, and
P. Scheuermann, “Probabilistic range queries for
uncertain trajectories on road networks,” in Proc.
EDBT, 2011, pp. 283–294.

[14] G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann,
and I. F. Cruz, “Continuous probabilistic
nearest-neighbor queries for uncertain trajectories,” in
Proc. EDBT, 2009, pp. 874–885.

[15] J. S. Greenfeld, “Matching gps observations to
locations on a digital map,” in Transportation
Research Board 81st Annual Meeting, 2002.

[16] K. Zheng, Y. Zheng, X. Xie, and X. Zhou, “Reducing
uncertainty of low-sampling-rate trajectories,” in Proc.
IEEE ICDE, no. 1144-1155, 2012.

[17] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang, “Map-matching for low-sampling-rate gps
trajectories,” in ACM GIS, 2009, pp. 352–361.

[18] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun,
“An interactive-voting based map matching
algorithm,” in 11th MDM Conf., 2010, pp. 43–52.

[19] J. Krumm and E. Horvitz, “Predestination: Inferring
destinations from partial trajectories,” in Ubicomp,
2006, pp. 243–260.

[20] J. Krumm, R. Gruen, and D. Delling, “From
destination prediction to route prediction,” in Journal
of Location Based Services, vol. 7, no. 2, 2013.

[21] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck, “Alternative routes in road networks,” in
ACM JEA, vol. 18, 2013.

[22] R. Bader, J. Dees, R. Geisberger, and P. Sanders,
“Alternative route graphs in road networks,” in
TAPAS Conf., LNCS, vol. 6595, 2011, pp. 21–32.

[23] E. W. Dijkstra, “A note on two problems in connexion
with graphs,” in Numerische Mathematik, vol. 1, no. 1,
1959, pp. 269–271.

[24] M. N. Rice and V. J. Tsotras, “Parameterized
algorithms for generalized traveling salesman problems
in road networks,” in ACM GIS, 2013, pp. 114–123.

[25] R. Geisberger, M. N. Rice, P. Sanders, and V. J.
Tsotras, “Route Planning with Flexible Edge

Restrictions,” ACM JEA, vol. 17, no. 1, 2012.

APPENDIX
A. Availability Intervals on Edges.
So far we have discussed the concepts of availability inter-
vals, corridors, and assemblies with respect to nodes only,
not along edges. However, it is likely that objects would
actually meet at a location somewhere along the midspan of
a road (edge), e.g., at a restaurant, mall, gas station, etc.

There are two possible approaches to address this scenario.
One is that, if we know what midspan edge locations are of
interest to us a priori, then we can easily subdivide their
corresponding “containing” edges by making these locations
proper nodes in the graph as well. Then our current model
“just works” as-is. However, if dealing with a lot of possible
locations of interest, this can potentially explode the size of
the graph. Therefore, another perhaps-more-desirable and
flexible approach is to simply use the existing earliest-arrival
and latest-departure information that we have already cal-
culated from our simpler node-based model to interpolate
information for a more detailed model along the edges. For
example, for any position p in the range [0, 1] along an edge
(u, v) ∈ E, we can calculate its availability interval as:

[eai(u) + p · w(u, v), ldi(v)− (1− p) · w(u, v)]

Note that this assumes, if the traveler enters the edge
(u, v) at u, that they must also exit the edge at v. However,
this is not always the case, especially for meeting locations
with, e.g., parking lots, such as restaurants, gas stations,
etc. In these cases, the traveler might enter the edge at u,
travel to position p to meet, then depart p and head back
to u (in the opposite of the direction they came, along the
opposing edge (v, u)), effectively completing a “u-turn”. In
order to accommodate this more flexible and realistic pos-
sibility, we could assume that the traveler could have done
either (completing the traversal of (u, v) or doing a u-turn),
giving us the (potentially larger) availability interval of:

[eai(u) + p · w(u, v),max{ldi(v)− (1− p) · w(u, v),

ldi(u)− p · w(v, u)}]

Note also that not all edges will support such u-turn sce-
narios (e.g., roads with medians), so we can be selective as
to which edges for which we allow this type of availability
interval to occur.
B. Additional Figures.

0 0.2 0.4 0.6 0.8 1
1.65

1.7

1.75

1.8

1.85

1.9

Meeting Size(fraction of total number of objects)

CP
U

Ti
m

e
(s

ec
)

γ,τ Query CH

0 0.2 0.4 0.6 0.8 1
35.5

35.6

35.7

35.8

35.9

36

36.1

36.2

36.3

Meeting Size(fraction of total number of objects)

CP
U

Ti
m

e
(s

ec
)

γ,τ Query DJ

(a) (b)

Figure 10: Detailed Min γ vs Query Evaluation Time
for the (γ, τ)-query: (a) CH-based approaches, (b)
Dijkstra-based approaches.

	Introduction
	Assembly Queries
	Possible Approaches
	Our Contributions

	Related Work
	Formal Tracking Model
	Query Types
	Methods
	The Naïve Solution
	Arbitrary [,]-Query
	The Line-Sweep Algorithm

	Top-k Queries
	[top-k(),] Queries
	[,top-k()] Queries

	A Solution Using Contraction Hierarchies
	CH-Based Shortest Path Computation
	Naïve CH-Based Corridor Computation
	Optimized CH-Based Corridor Computation

	Experimental Evaluation
	Conclusions
	Acknowledgments
	References

